Quantum technology, group theory, phase space

ی سروی د مواد به م

Lecture 2, Peking University 2019

P. D. Drummond

House

SWINBLIRNE UNIVERSITY OF TECHNOLOGY

Mathematics based on Lie groups and Cartan spaces

- **Expand density matrix on a complete basis:**
- Basis should have a unit trace:
- **Normalized 'probability' may be real or complex:**

$$
\hat{\rho} = \int d\lambda P(\lambda) \hat{\Lambda}(\lambda) ,
$$

$$
\operatorname{Tr} \left[\hat{\Lambda}(\lambda) \right] = 1
$$

$$
\int d\lambda P(\lambda) =
$$

 $\mathbf{1}$.

The positive P-representation expands in coherent state projectors

$$
\widehat{\rho} = \int P(\boldsymbol{\alpha}, \boldsymbol{\beta}) \widehat{\Lambda}(\boldsymbol{\alpha}, \boldsymbol{\beta}) d^{2M} \boldsymbol{\alpha} d^{2M} \boldsymbol{\beta}
$$

$$
\widehat{\Lambda}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{|\boldsymbol{\alpha}\rangle \langle \boldsymbol{\beta}^*|}{\langle \boldsymbol{\beta}^*| |\boldsymbol{\alpha}\rangle}
$$

Enlarged phase-space allows positive probabilities!

- Maps quantum states into 4M real coordinates: $\alpha, \beta = p + i x, p' + i x'$
- Double the size of a classical phase-space
Exact mappings even for low occupations
-
- Advantage: Can represent entangled states

P. D. D. and C. W. Gardiner, J. Phys. A: Math. Gen. 13, 2353 (1980).

1: Boson sampling

Send N single photons through an M-channel photonic device

• Measure the output photon number distribution

This solves the exponentially hard problem of generating random bits with permanent distribution

• Matrix permanents are a '#P' hard problem, taking exponentially long times to compute at large N

Boson sampling experiment: macroscopic quantum cat

Experiments: Oxford, Vienna, Queensland, Rome, USTC..

Why is boson sampling hard?

There are exponentially many interfering paths!

• The N-photon probability is a matrix permanent

$$
P = \left| \sum_{\sigma} \prod_{i} T_{i, \sigma(i)} \right|^2
$$

- Here $T = \sqrt{1-\gamma}U$: U is an $N \times N$ (sub)unitary, γ a loss
- Standard methods take $N \times 2^N$ operations
- TRILLIONS of years for $N = 100$ at 1GFlop
- Impossible even on the largest supercomputers

LARGEST PERMANENT EVER CALCULATED `EXACTLY': N=50, TIANHE II, Wu et al, Nat. Science Review, 5 715 (2018)

Complex P-representation-'complex weighted sampling'

The N-mode, N-boson state,

$$
P\left(\boldsymbol{\alpha},\boldsymbol{\beta}\right)=\frac{1}{\left(2\pi i\right)^{2N}}\prod_{j}\frac{e^{\alpha_{j}\beta_{j}}d\alpha_{j}d\beta_{j}}{(\alpha_{j}\beta_{j})^{2}}
$$

Result for the output characteristic function:

$$
\chi(\boldsymbol{\xi}) = \oint \ldots \oint P(\boldsymbol{\alpha},\boldsymbol{\beta}) e^{\boldsymbol{\xi} \cdot \boldsymbol{\tau}^* \boldsymbol{\beta} - \boldsymbol{\xi}^* \cdot \boldsymbol{\tau} \boldsymbol{\alpha}} d \boldsymbol{\alpha} d \boldsymbol{\beta}.
$$

• Exact unitary averaged output depend on the *input* photon number \hat{N} :

$$
\left\langle \chi^{(\mathrm{out})}(\boldsymbol{\xi}) \right\rangle_U = (M-1)!\sum_{j=0}^M \frac{\left(-t\,|\boldsymbol{\xi}|^2\right)^j\left\langle: \hat{N}^j:\right\rangle}{j!\,(M-1+j)!}
$$

Individual unitary simulation – possible at any size, but count rates get small

Randomly sample the complex-P contour integral; simulates any permanent **much** better than experiment – **Speed-up over a million times already at k=6, N=20**

We can simulate any sub-unitary with better than experimental error!

How do we interpret this result?

- Complex-P error in $|P|^2$ decreases rapidly with matrix-size N
- But, the experimental sampling error is proportional to $|P|$
- We calculate $|P|^2$ better than experiment!
- Don't generate a digital bitstream doesn't solve a $#P$ problem
- Can verify ANY possible N-th order correlation!
- Problem: correlations too small to measure at large N

Is it useful? YES: Quantum Metrology!

- Use a multichannel Quantum Fourier Transform
	- Enhances phase gradient measurement by N
	- Proposal by Rohde & Dowling groups
	- Ultrasensitive phase gradient measurements
- **How sensitive is this to phase decoherence?**

–**Can compute 100x100 permanents**

- Conventional supercomputer limits 50x50 (Tianhe II)
- Would take trillions of years with standard methods

Opanchuk *et. al,* Optics Letters **44**, 343 (2019).

Boson sampling enhanced metrology

Strong fringes EVEN with added decoherence!

2: Quantum Circuit Cats

Exactly soluble model

Now used in LIGO, quantum cat experiments at Yale

Hamiltonian

Parametric interaction including $\chi^{(3)}$ nonlinearity

Pump $(k = 2)$ & downconverted field $(k = 1)$: $H = \hbar \sum_{n=1}^{6} \sum_{k=1}^{2} H_k^{(n)}$: $H_k^{(1)} = \left[\hat{\Gamma}_k a_k^{\dagger} + h.c.\right] + H_k^R$ [Linear damping] $H_k^{(2)} = \left[\hat{\Gamma}_k^{(2)} a_k^{\dagger 2} + h.c.\right] + H_k^{R2} \quad \text{[Nonlinear damping]}$ $H_k^{(3)} + H_k^{(4)} = \omega_k a_k^{\dagger} a_k + \left[i \mathcal{E}_k a_k^{\dagger} e^{-ik\omega_p t} + h.c \right]$ [Linear coupling] $H_k^{(5)} + H_1^{(6)} = \frac{\chi_k}{2} a_k^{\dagger 2} a_k^2 + \left[i \frac{\kappa}{2} a_2 a_1^{\dagger 2} + h.c. \right]$ [Nonlinear coupling]

Equivalent singlemode equation

Two-mode problem mapped into an one-mode equivalent Result of adiabatic elimination is a new complex FPE $\frac{\partial P_1}{\partial t} = \left\{ \frac{\partial}{\partial \alpha} \left[\gamma \alpha - \mathscr{E}_1 - \varepsilon(\alpha) \alpha^+ \right] + \frac{1}{2} \frac{\partial^2}{\partial \alpha^2} \varepsilon(\alpha) + hc \right\} P_1.$ Here: $\epsilon(\alpha) = \epsilon - \chi \alpha^2$

 $\chi = \gamma_1^{(2)} + i\chi_1 + |\kappa|^2/2\gamma_2$

 $\varepsilon = \kappa \mathscr{E}_2/\gamma_2$

FPE has an exact steady-state solution

$$
P_1(\vec{\alpha}) = N \exp \left[-\Phi(\vec{\alpha}) \right],
$$

Introducing dimensionless parameters $c = (\gamma - \chi)/\chi$ and $\lambda_c = \varepsilon/\chi$,

$$
\Phi(\vec{\alpha}) = -2\alpha^+\alpha - c\ln[\lambda_c - \alpha^2] - c^* \ln[\lambda_c^* - \alpha^{+2}],
$$

The steady-state probability distribution is given by

$$
P_S(\vec{\alpha})=N(\lambda_c-\alpha^2)^c(\lambda_c^*-\alpha^{+2})^{c^*}e^{2\alpha^+\alpha}.
$$

Feng-Xiao Sun, et. al, New Journal of Physics, 21, 093035 (2019); Physical Review A 100, 033827 (2019).

Scale parameters to get universal behaviour

- Let: $\beta = \alpha/\sqrt{\lambda_c}$ and $\beta^+ = \alpha^+/\sqrt{\lambda_c^*}$.
- We introduce $\lambda = |\lambda_c|$ and $\lambda(\beta) = \lambda (1 \beta^2)$.

In the scaled coherent space:

$$
P_S\left(\vec{\beta}\right) = N(1-\beta^2)^c(1-\beta^{+2})^{c^*}e^{2\lambda\beta^{+}\beta}.
$$

Boundaries: probability vanishes at $\beta = \pm 1$, $\beta^+ = \pm 1$.

Manifold of coherent amplitudes

$$
\beta = x + ix \tan(\varphi) \cos^{p}(x\pi/2) \cos^{p}(y\pi/2),
$$

$$
\beta^{+} = y - iy \tan(\varphi) \cos^{p}(x\pi/2) \cos^{p}(y\pi/2).
$$

Manifold is a 2D surface in 4D phase-space

Potential for tunneling

看 つへへ

Tunneling: How to escape a local minimum

Swanson-Landauer theory, with complex potentials Analytic formula valid in the large barrier limit

$$
T = \frac{2\pi}{|\chi|\cos 2\phi} \left[\frac{-\Phi_{VV}^{(o)}}{\Phi_{uu}^{(o)}\Phi_{uu}^{(c)}\Phi_{VV}^{(c)}} \right]^{\frac{1}{2}} \exp(\Phi^{(o)} - \Phi^{(c)})
$$

Simplest case: no anharmonic term $(Im(\chi) = 0)$, let $\bar{c} = c + 1/2$:

$$
T = \frac{\pi}{|\chi|} \left[\frac{\lambda + \bar{c}}{\lambda(\lambda - \bar{c})^2} \right]^{\frac{1}{2}} \exp \left\{ 2 \left[\lambda - \bar{c} - \bar{c} \ln \left(\frac{\lambda}{\bar{c}} \right) \right] \right\},\,
$$

Can also calculate numerically with number states - red circles below

Tunneling rates versus pump amplitude

Tunneling rates versus anharmonicity

Steady-state moments

• Exact solution

$$
I_{nn'}^{ex} \propto \sum_{m} \frac{(2\lambda)^m}{m!} (-\sqrt{\lambda_c})^{n'} {}_{2}F_1(-m-n', c+1, 2c+2, 2)
$$

$$
\times (-\sqrt{\lambda_c^*})^{n} {}_{2}F_1(-m-n, c^*+1, 2c^*+1, 2)
$$

• Wolinsky & Carmichael (PRL) :

$$
I_{nn'}^{\delta} \propto e^{2\lambda} \left[(\sqrt{\lambda_c})^{n'} (\sqrt{\lambda_c^*})^n + (-\sqrt{\lambda_c})^{n'} (-\sqrt{\lambda_c^*})^n \right] + e^{-2\lambda} \left[(-\sqrt{\lambda_c})^{n'} (\sqrt{\lambda_c^*})^n + (\sqrt{\lambda_c})^{n'} (-\sqrt{\lambda_c^*})^n \right].
$$

· Schrödinger Cat:

$$
I_{nn'}^{\delta} = e^{\lambda} \left[(\sqrt{\lambda_c})^{n'} (\sqrt{\lambda_c^*})^n + (-\sqrt{\lambda_c})^{n'} (-\sqrt{\lambda_c^*})^n \right] + e^{-\lambda} \left[(-\sqrt{\lambda_c})^{n'} (\sqrt{\lambda_c^*})^n + (\sqrt{\lambda_c})^{n'} (-\sqrt{\lambda_c^*})^n \right].
$$

Schrödinger cats only form as transients!

Cats CAN form, but not steady-state

- Steady-state solution exists at strong coupling
- For $\Re(c)$ < 0 get a pole at the boundary
- Weak coupling manifold is unstable
- Must change to a new manifold
- Steady-state Wigner is positive (Reid&Yurke) \Longrightarrow no cat

Work on transient cats-

- M. Reid, B. Yurke, Phys. Rev. A 46, 4131 (1992).
- L. Krippner, W. Munro, M. Reid, Phys. Rev. A 50, 4330 (1994).
- W. Munro, M. Reid, Phys. Rev. A 52, 2388 (1995).

Applications to quantum computers

Universal quantum computers have decoherence, scaling problems

Alternative: Dedicated hardware for NP-hard problems

The Ising machine: a paramp network

CIM Simulations

Can be simulated with complex/positive P

Already reaches 2000 qubits in size

Solves 100 times larger problems than D-wave

 \mathbf{O}

NTT Phi-lab opened in San Jose in July

Joint research program with SUT

New techniques for deep quantum regime

3: Optomechanical Cats

- **First principles quantum simulations**
- **Nonlinear model** \bullet
- **Entanglement agrees with experiment**

Hamiltonian

$$
\hat{H}/\hbar = \delta \hat{a}^{\dagger} \hat{a} + \omega_m \hat{b}^{\dagger} \hat{b} + \chi \hat{a}^{\dagger} \hat{a} (\hat{b} + \hat{b}^{\dagger}) \n+ i E(t) (\hat{a}^{\dagger} - \hat{a}) + \hat{H}_r.
$$

Standard model for nonlinear optomechanical Hamiltonian

A. F. Pace, M. J. Collett, and D. F. Walls, Phys. Rev. A 47, 3173 (1993).

Exact positive-P stochastic equations

$$
d\alpha = \{E(t) - [i\delta_k + i\chi(\beta + \beta^+) + \gamma_o]\alpha\}dt + dW_1,
$$

\n
$$
d\beta = [-(i\omega_m + \gamma_m)\beta - i\chi\alpha\alpha^+]dt + dW_2,
$$

\n
$$
d\alpha^+ = \{E^*(t) + [i\delta_k + i\chi(\beta + \beta^+) - \gamma_o]\alpha^+\}dt + dW_1^+,
$$

\n
$$
d\beta^+ = [(i\omega_m - \gamma_m)\beta^+ + i\chi\alpha\alpha^+]dt + dW_2^+,
$$

\n
$$
d\alpha^{\text{out}} = \sqrt{2\gamma_{\text{ext}}}d\alpha - d\alpha_{\text{ext}}^{\text{in}},
$$

\n
$$
d\alpha^{\text{out}+} = \sqrt{2\gamma_{\text{ext}}}d\alpha^+ - d\alpha_{\text{ext}}^{\text{in}}.
$$
\n(2.8)

Internal photon and phonon modes, plus external input and output reservoirs are ALL included in the exact dynamical equations

Light and matter entanglement: theory vs JILA experiment

PHYSICAL REVIEW A 90, 043805 (2014)

Data from: T.A. Palomaki, et. al., Science **342**, 710-713 (2013).

Proposal: entangle two oscillators using a quantum memory

Q. Y. He, M. D. Reid, E. Giacobino, J. Cviklinski, P. D. D., PRA 79, 022310 (2009). S. Kiesewetter, R. Y. Teh, P. D. D., and M. D. Reid, Phys. Rev. Lett. 119, 023601 (2017)

Essential feature: temporal mode-matched input/output

Must have temporal mode-matching to ensure high-fidelity single-mode input

$$
u_0^{in}\left(t\right) = -2i\frac{\sqrt{\left(\kappa_++m\right)\left(\kappa_+-m\right)\kappa_+}}{m}\mathrm{sinh}\left(mt\right)e^{\kappa_+t}\Theta(-t)
$$

where
$$
\kappa_+ = (\gamma_o + \gamma_m)/2
$$
, $\kappa_- = (\gamma_o - \gamma_m)/2$

This ensures perfect, temporally mode-matched input and output

Download photonic cat to a massive mechanical cat - see Yale experiments!

$$
|\psi_{cat}\rangle = \frac{1}{\sqrt{\mathcal{N}}} (|\alpha_0\rangle + |-\alpha_0\rangle)
$$

$$
\sum_{\substack{\mathbf{5} \text{ use } \mathbf{6} \\ \mathbf{2} \\ \mathbf{5} \\ \mathbf{6} \\ \mathbf{9} \end{array}}
$$

Note: this is a very pure cat!

Schrodinger Cat predictions Phys. Rev. A 98, 063814 (2018).

Input Schrodinger cat positive P-representation

$$
P\left(\vec{\alpha}_0^{in}\right) = \frac{1}{\mathcal{N}} \left[\delta_{+,+} + \delta_{-, -} + e^{-2|\alpha_0|^2} \left(\delta_{+, -} + \delta_{-, +} \right) \right]
$$

This is the input to the sampled equations, then used to calculate the output Wigner function of the stored cat state

$$
W(\alpha) \approx \frac{2}{\pi N_s} \sum_{i}^{N_s} w(\vec{\alpha}_{0,i}^{in}) e^{-2(\alpha_{0,i}^{out + -\alpha^*)} (\alpha_{0,i}^{out - \alpha})]}.
$$

Result of simulated mode-matched injection and retrieval

Parameters used are taken from:

('100 photon' CAT at Yale): C. Wang et al Science, 352, 1087 (2016).

4: BEC Schrodinger Cats

Rubidium experiment at **SUT**

Longest coherence time of any BEC interferometer

Bose gas master equation, finite temperature

A D-dimensional Bose gas has two spin components that are linearly coupled by an external microwave field.

$$
\hat{H}=\hbar\int d^{3}\mathbf{x}\left[\frac{\hbar}{2m}\nabla\hat{\Psi}_{i}^{\dagger}\nabla\hat{\Psi}_{i}+V_{i}\left(\mathbf{x}\right)\hat{\Psi}_{i}^{\dagger}\hat{\Psi}_{i}+\frac{\mathcal{B}ij}{2}\hat{\Psi}_{i}^{\dagger}\hat{\Psi}_{j}^{\dagger}\hat{\Psi}_{j}\hat{\Psi}_{i}+v\hat{\Psi}_{i}^{\dagger}\hat{\Psi}_{3-i}\right]
$$

Here, g_{ii} is the self- and cross-coupling in D -dimensions. Collisional damping follows a master equation,

$$
\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho} \right] + \sum \kappa_{\ell} \int d^3 \mathbf{x} \left[2 \hat{O}_{\ell} \hat{\rho} \, \hat{O}_{\ell}^{\dagger} - \hat{O}_{\ell}^{\dagger} \hat{O}_{\ell} \hat{\rho} - \hat{\rho} \, \hat{O}_{\ell}^{\dagger} \hat{O}_{\ell} \right]
$$

This includes self- and cross nonlinear damping, with

$$
\hat{O}_{\pmb{\ell}}=\prod \hat{\Psi}_j^{\ell_j}
$$

Initial finite temperature state

- Take an initial finite temperature state
- Represent density matrix with Wigner
- Nonlinear chemical potential eliminates Bogoliubov `gapless' divergence problem
- King et. al., Journal of Physics A: 52, 035302 (2019).

 $\hat{K} = \hat{H} - \mu_1 \hat{N} - \frac{\mu_2}{2} \hat{N}^2$

Wigner phase-space: 1/N expansion

Result of Wigner operator mappings:

 \bullet

$$
i\partial_{\tau}\psi_{i} = \left\{-\frac{1}{2}\nabla_{\zeta}^{2} + \gamma\psi_{i}^{\dagger}\psi_{i} + \gamma_{c}\psi_{j}^{\dagger}\psi_{j}\right\}\psi_{i} - \tilde{v}\psi_{j},
$$

$$
-\sum \tilde{\kappa}_{\ell} \frac{\partial \tilde{O}_{\ell}^{*}}{\partial \psi_{i}^{*}} \tilde{O}_{\ell} + B_{ij}[\psi]\eta_{j}(t,x)
$$

Scaling:
$$
\tau = t/t_0
$$
, $\zeta = x/x_0$,
 $t_0 = \hbar / gn$; $x_0 = \hbar / \sqrt{gnm}$; $\langle \Delta \tilde{\psi}(\zeta) \Delta \tilde{\psi}^*(\zeta') \rangle = \frac{1}{2} \delta (\zeta - \zeta')$.

Test case: Interferometry on an atom chip (Sidorov, Swinburne)

Rubidium interferometry

A two-component, 4×10^4 atom ⁸⁷Rb BEC is in a harmonic trap with internal Zeeman states $|1, -1\rangle$ and $|2, 1\rangle$, which can be coupled via an RF field.

Computed vs observed 3D fringe visibility

Evidence for 40,000 atoms entangled

- Calculate dynamical condensate occupation
- Combine with fringe visibility
- Evidence for macroscopic entanglement

5: 1D Bose gas breathers

Joint program with UMass, Tel Aviv, Experiments at Rice U.

King Ng, Bogdan Opanchuk, Margaret D. Reid, P.D.D.,

Phys. Rev. Lett. 122, 20364, 2019

One-dimensional Bose gas **Swinburne**

Hamiltonian

$$
\hat{H}_{1D} = \int \hat{\Psi}_{1D}^{\dagger} H_1 \hat{\Psi}_{1D} dr_3 + \frac{g_{1D}}{2} \int (\hat{\Psi}_{1D}^{\dagger})^2 \hat{\Psi}_{1D}^2 dr_3
$$
\n
$$
H_1 = -\hbar^2 \partial_3^2 / 2m + m\omega_3^2 r_3^2 / 2
$$
\n
$$
g_{1D} = 2\hbar \omega_{\perp} a
$$
\n
$$
r_0^2 = \hbar t_0 / 2m
$$
\n
$$
z = r_3 / r_0 \hat{\Psi} = \sqrt{r_0} \hat{\Psi}_{1D} \tau = t / t_0 \hat{\Psi}, z(z) \equiv \partial_z \hat{\Psi}(z)
$$
\n
$$
\hat{H} = \int dz \left[\hat{\psi}_{,z}^{\dagger}(z) \hat{\psi}_{,z}(z) + C \left(\hat{\psi}^{\dagger}(z) \right)^2 \hat{\psi}^2(z) \right]
$$
\n
$$
C = mg_{1D} r_0 / \hbar^2
$$

Conservation laws

Swinburne

Local symmetry from Noether's theorem leads to globally conserved quantities

1.Particle number $\hat{N} = \sum_{\bm{k}} \hat{n}_{\bm{k}}$ $\hat{P} = \sum_{k} k \hat{n}_k$ 2.Momentum $\hat{H} = \sum_{k} k^{2} \hat{n}_{k} + \frac{C}{V} \sum_{k} \hat{a}^{\dagger}_{k_{1}} \hat{a}^{\dagger}_{k_{2}} \hat{a}_{k_{3}} \hat{a}_{k_{4}} \delta_{\bm{k}}$ 3.Energy $\hat{H}_3 = \sum_k k^3 \hat{n}_k + \frac{3C}{2V} \sum_{\mathbf{k}} \left(k_1 + k_2 \right) \hat{a}_{k_1}^\dagger \hat{a}_{k_2}^\dagger \hat{a}_{k_3} \hat{a}_{k_4} \delta_{\mathbf{k}}.$ 4.Higher order term

Quench experiment:

- Make an attractive soliton, increase coupling by 4x
- Exact solutions, DMRG fail at N>5

SCIENCE | TECHNOLOGY | INNOVATION | BUSINESS | DESIGN

Conservation laws: Truncated Wigner

• Conservation of quantities in **Wigner** representation

$$
\langle \hat{N} \rangle_{W} = \langle N \rangle_{W} - \frac{1}{2} M_{0}
$$

$$
\langle \hat{P} \rangle_{W} = \langle P \rangle_{W}
$$

$$
\langle \hat{H} \rangle_{W} = \langle H - \frac{2C}{\Delta z} N \rangle_{W} - \frac{1}{2} M_{2} + \frac{MC}{2\Delta z}
$$

$$
\langle \hat{H}_{3} \rangle_{W} = \langle H_{3} - \frac{3C}{\Delta z} P \rangle_{W}
$$

SCIENCE | TECHNOLOGY | INNOVATION | BUSINESS | DESIGN

Truncated Wigner: breather relaxation

Swinburne

Ref: Phys. Rev. A 96, 053628, 2017

- Gradual fragmentation Decay of breather
	-

Multimode Schrodinger cat Soliton splits either way, 3:1 number ratio

Also see: **Yurovsky et. al, Phys. Rev. Lett. 119, 220401 (2017)**

Truncated Wigner: multi-mode evolvement

- Single eigen-mode evolves to multi-eigenmode (~7)
- Partial fragmentation

Ref: Phys. Rev. A 96, 053628, 2017

Swinburne

Second-order correlation: $g^{(2)}(x_m, x_n)$

Time-evolution of left-right number difference.

 0.15

 0.2

0.25

3

 \mathfrak{D}

Τ

25

20

 $(\Delta x)^{2}$ 15
(10

Agreement of exact +P and truncated Wigner state, with *either* number state *or* Poissonian initial conditions. **Experiments at Rice U.**

6: Early universe simulations

Quantum field theory: exponentially complex

Essential to current theories of cosmology Energies a trillion times larger than CERN How can we compute what theory predicts?

Use ultracold BEC as relativistic simulator

Check predictions with computer simulations

How can we test theories of the Big Bang?

Now 13,700,000,000 YEARS **AFTER BIG BANG FORMATION OF THE SOLAR SYSTEM** 8.700,000,000 YEARS **AFTER BIG BANG GALAXY EVOLUTION** CONTINUES... **FIRST GALAXIES** 1000,000,000 YEARS **AFTER BIG BANG FIRST STARS** 400,000,000 YEARS **FTER BIG BANG THE DARK AGES COSMIC MICROWAVE BACKGROUND** 400.000 YEARS AFTER **BIG BANG INFLATION THE. BIG**

BANG

Planck spacecraft was launched in May 2009. On 21 March 2013, the mission's all-sky map of the CMB was released

The CMB is a snapshot of the oldest light in our Universe, imprinted on the sky when the Universe was just 380,000 years old.

We can't see beyond that BGV theorem

Quantum models of the Big Bang

In reality the Universe has at least 3 dimensions. Bubbles appear during the transition to true vacuum.

Are we in one of the bubbles….lonely….?

Similar to water boiling or bubbles in champagne

What is the observational evidence?

Analog quantum simulator

Early universe models

■ The simplest model has a scalar inflaton field Relativistic, interacting quantum field dynamics \bullet $\phi(x)$ is described by the Lagrangian

$$
\mathscr{L}=\frac{1}{2}\partial_\mu\phi\partial^\mu\phi-V(\phi),
$$

where $V(\phi)$ is the potential down which the scalar field rolls

Early universe quantum simulation

$41K$ Feshbach resonance

- zero inter- state scattering length at 685.7 G
	- nearly equal self-interactions,
	- unknown loss rates (can be estimated)
	- resonance not yet observed

Potential well with microwave coupling

Equivalent Sine-Gordon equation

$$
\psi_1 = ue^{i(\phi_s + \phi_a)/2} \cos(\theta)
$$

$$
\psi_2 = ue^{i(\phi_s - \phi_a)/2} \sin(\theta),
$$

- **Canonical momentum:** $\pi = \partial_{\tau} \phi_{a} / 4 \gamma_{sa}$,
- Commutators: $[\phi_a(\zeta), \pi(\zeta')] = i\delta^D(\zeta \zeta')$.

Sine-Gordon equation:

$$
\nabla^2\phi_a-\partial_{\zeta_0\zeta_0}\phi_a+\tilde{\alpha}\sin\phi_a=0
$$

Effective potential

Vacuum bubbles expand at light-speed

Metastable 2D Universe: BEC simulations

SUMMARY

Positive P-representation

Exact intracavity open quantum dynamics, opto- mechanics, Schrodinger cats

Complex P-representation

Exact Boson sampling quantum simulations –large mode numbers, huge permanents

Wigner representation

Treatment of large BEC systems with 1/N expansion, millions of modes possible

Next step:

Stochastic bridges, interacting Fermi phase space